If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x-28=0
a = 7; b = 35; c = -28;
Δ = b2-4ac
Δ = 352-4·7·(-28)
Δ = 2009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2009}=\sqrt{49*41}=\sqrt{49}*\sqrt{41}=7\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7\sqrt{41}}{2*7}=\frac{-35-7\sqrt{41}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7\sqrt{41}}{2*7}=\frac{-35+7\sqrt{41}}{14} $
| 2.x=-1 | | 2(-4x-16)=-8x-6 | | -28=8w+4(w-4) | | 2(x+5)+6x=8x+10. | | y-12=17 | | 9=x3 | | 17xX=2 | | –17.32−16.1v=–6.33−17.2v−14.6v | | 3x+5/2=-3 | | -8(8-r)=-96 | | 1.x=1 | | 7-3r=8+3r | | 2(x-2)=3x+6 | | x-95=x-37 | | 24m=85=685 | | 7x^2=35x-28 | | 5(b-2)=15 | | 7+x=1/2(4x-4) | | -2v=-3-v | | -7(x+3)-12=10+6 | | h/2+5=6 | | X-a=24 | | -3(-3+3x)=-9x-4 | | 1+5x-x=x-4+2x | | 8x+6=4x−14 | | x÷4-9=7 | | 16=4b-(-8) | | 2n2=105+n | | 7x+2-5x-8=-18 | | z5-6=13/4 | | 12x-3=111 | | 3x+47=6x-45 |